翻訳と辞書
Words near each other
・ Bretenière
・ Bretenières
・ Bretenoux
・ Bretesuchus
・ Breteuil
・ Breteuil, Eure
・ Breteuil, Oise
・ Breteuil-Embranchement station
・ Bretford
・ Bretforton
・ Bretha Nemed Déidenach
・ Brethel
・ Brethenay
・ Bretherdale Head
・ Bretherton
Bretherton equation
・ Brethertons
・ Brethour, Ontario
・ Brethren
・ Brethren (Australian group)
・ Brethren (novel)
・ Brethren Christian Junior/Senior High School
・ Brethren Colleges Abroad
・ Brethren High School
・ Brethren in Christ Church
・ Brethren in Christ Church (Garrett, Indiana)
・ Brethren in Christ Church Society
・ Brethren Missionary Herald Company
・ Brethren of Purity
・ Brethren of the Coast


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bretherton equation : ウィキペディア英語版
Bretherton equation
In mathematics, the Bretherton equation is a nonlinear partial differential equation introduced by Francis Bretherton in 1964:
:u_+u_+u_+u = u^p,
with p integer and p \ge 2. While u_t, u_x and u_ denote partial derivatives of the scalar field u(x,t).
The original equation studied by Bretherton has quadratic nonlinearity, p=2. Nayfeh treats the case p=3 with two different methods: Whitham's averaged Lagrangian method and the method of multiple scales.
The Bretherton equation is a model equation for studying weakly-nonlinear wave dispersion. It has been used to study the interaction of harmonics by nonlinear resonance. Bretherton obtained analytic solutions in terms of Jacobi elliptic functions.〔
==Variational formulations==
The Bretherton equation derives from the Lagrangian density:
:
\mathcal = \tfrac12 \left( u_t \right)^2 + \tfrac12 \left( u_x \right)^2 -\tfrac12 \left( u_ \right)^2
- \tfrac12 u^2 + \tfrac u^

through the Euler–Lagrange equation:
:
\frac \left( \frac \right)
+ \frac \left( \frac \right)
- \frac \left( \frac} \right)
- \frac = 0.

The equation can also be formulated as a Hamiltonian system:
:
\begin
u_t & - \frac = 0,
\\
v_t & + \frac = 0,
\end

in terms of functional derivatives involving the Hamiltonian H:
: H(u,v) = \int \mathcal(u,v;x,t)\; \mathrmx and
\mathcal(u,v;x,t) = \tfrac12 v^2 - \tfrac12 \left( u_x \right)^2 +\tfrac12 \left( u_ \right)^2
+ \tfrac12 u^2 - \tfrac u^

with \mathcal the Hamiltonian density – consequently v=u_t. The Hamiltonian H is the total energy of the system, and is conserved over time.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bretherton equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.